"Decimos que nuestros números, nuestra aritmética, nuestra matemática son "puras" "por la misma razón que ciertos animales lo son para los llamados salvajes: son puros porque no deben tocarse, pues forman parte de ese sustrato de creencias fundamentales que nos constituyen y sin las cuales se desfondaría el orden social" Emmánuel Lizcano.
Las etnomatemáticas es el estudio de la relación entre las matemáticas y la cultura. La forma en que entendemos las matemáticas influye en nuestra cultura y cómo vemos el mundo, mientras que nuestra cultura influye en cómo entendemos las matemáticas.
Sí, ese sistema de conocimientos objetivos, exactos, y rigurosos no es un modelo único. Las matemáticas también son productos culturales, y cambian, no solo de un lugar geográfico a otro, sino también de un momento histórico a otro. Contamos, medimos, calculamos, lo calculamos y diseñamos de manera diferente, y esto es algo bueno: responde a las necesidades que la sociedad impone. La etnomatemática invita a visibilizar el saber matemático presente en todas las culturas, como una forma de suscitar reflexiones críticas que permitan reconocer los propios saberes matemáticos.
"¿Qué ocurre si invertimos la mirada?" se pregunta Emmánuel Lizcano, matemático, filósofo y sociólogo. "¿Qué vemos si, en lugar de mirar las prácticas populares desde ‘la matemática’, miramos la matemática desde las prácticas populares? ¿Qué vería un algebrista chino, de ésos que despreciaban los primeros misioneros jesuitas, al observar las prácticas matemáticas que desarrollaban los Galileo, Descartes o Vieta que vivían en las ciudades centroeuropeas de la época? Vería, ciertamente, una gente muy torpe en el manejo de las ecuaciones algebraicas. Una gente en la que nuestro chino encontraría ‘rastros’ de ciertos conceptos, como los de zheng, fu y wu. Conceptos a los que esos exóticos europeos llamaban, respectivamente, ‘número positivo’, ‘número negativo’ y ‘cero’, aunque el empleo que de ellos hacían era aún muy primitivo. Vería que todavía en el s. XVIII de su era, la cristiana, el pensador al que ellos más apreciaban y llamaban Emmanuel Kant, aún discutía si "fu" debía considerarse o no un número, al que denominaba ‘negativo’, como si le faltara algo o fuera algo malo. Vería también ‘embriones’ de ciertas operaciones, como la operación "xiang xiao" (o ‘destrucción mutua’), mediante la cual sus antepasados chinos habían desarrollado un método con el que resolvían, desde tiempo inmemorial, sistemas de ecuaciones lineales con varias incógnitas. Y seguramente se indignaría al enterarse de que ese método fue objeto de piratería matemática y llegó a estudiarse en Europa como el método de Gauss, borrando toda huella de su origen.
Pero si nuestro algebrista chino fuera también antropólogo, (...) se explicaría, por ejemplo, las dificultades europeas para manejar el concepto de "wu", que en ocasiones intuían bajo el nombre de ‘cero’, poniéndolas en relación con el obsesivo horror al vacío que experimentaba esa cultura. Un horror al vacío que llevaba también a sus físicos a llenar el espacio de fluidos misteriosos (como ése que llaman éter) y forzaba a sus pintores a llenar los cuadros de pintura, sin dejar que nada del lienzo vacío (wu) original quedara a la vista al finalizar la obra. ¿Cómo iban a moverse a gusto con los números positivos y negativos si carecían de los conceptos de yang y de yin? ¿Cómo no iban a considerar que sólo eran números naturales, los números positivos, si para ellos sólo existía lo que estaba lleno, lo que tenía entidad, y el resto eran sólo puras fantasías de la imaginación, como decía aquel tal Descartes para referirse a esos números que, por eso, llamó números imaginarios? ¿Cómo no iba aparecerles absurda una operación como el xiang xiao (o ‘destrucción mutua’) cuyo objetivo era obtener ceros en una matriz de números, es decir, construir voluntariamente esos vacíos que tanto horror les producían?
El etnólogo Marcel Granet advertía que en China: "Los números no tienen como función la de expresar magnitudes: sirven para ajustar las dimensiones concretas a las proporciones del Universo (...) En vez de servir para medir, sirven para oponer y para asimilar. Las cosas, en efecto, no se miden. Ellas mismas tienen sus propias medidas. Ellas son sus medidas”. “Los números no son más que emblemas: los chinos se cuidan mucho de ver en ellos signos arbitrarios que expresan forzosamente la cantidad”.
"El número chino" explica Lizcano, "más que medir, clasifica, tiene una función principalmente protocolaria. Así, el ‘uno’ es el ‘entero’, expresa el hueco o pivote (que también se dice como "tao") sobre el que gira la rueda, desencadenando las alternancias, las oposiciones y trans-fusiones de los opuestos entre sí. Estas oposiciones son las que se dicen en el ‘dos’, que nada tiene que ver con la suma de ‘uno’ más ‘uno’: ‘dos’ es la Pareja en la que alternan, distinguiéndose y confundiéndose, el yin y el yang. La serie de los números no comienza, pues, sino con el ‘tres’. A partir del ‘tres’, primer número, los restantes números son etiquetas de ‘lo numeroso’, de lo cual el ‘tres’ es la síntesis: de ahí que en él se exprese la unanimidad.
"Los números yoruba no son adjetivos o adjetivos sustantivizados, como los nuestros (hijos del sustancialismo griego), sino verbos. Verbos cuya actividad proyecta lo comunitario sobre los objetos a contar. Así, su sistema numeral tampoco comienza por el uno, pero por razones bien distintas a las chinas o las platónicas. Su sistema numeral comienza con agregados, en los que sólo después, por un proceso de desagregación o sustracción, se van produciendo fracturas, mediante el uso concurrente de las bases veinte, diez y cinco."
"Los que, desde pequeños, hemos llamado ‘números naturales’ son tan poco naturales como el individuo, el mercado o la evidente "salida" del sol cada mañana. Es decir, su naturalidad es el refinado producto de una construcción social muy determinada."
Se desconoce que el objeto matemático más antiguo de la humanidad (35.000 años a.C.) el hueso de Lebombo, fue encontrado en Suazilandia (África del Sur). Se trata de un fragmento de hueso de mandril marcado con 29 muescas que servía para contar, calcular y llevar el tiempo, para controlar dos ciclos muy importantes para el ser humano, el lunar y el menstrual. Un calendario todavía usado por algunos grupos khoisan en Namibia. Después, otro hueso llamado de Ishango, de hace 20.000, aparece en la ciudad de Leopoldville (hoy Kinshasa). Es una complejidad mucho mayor que el hueso de Lebombo. La columna central tiene 48 muescas, pero están agrupadas de manera significativa. Comienza con un grupo de 3 y luego otro de 6 (el doble); sigue un grupo de 4 marcas y otro de 8 (otra vez el doble); y luego aparece un grupo de 10 y otro de 5 (la mitad), para terminar con un grupo de 5 y otro de 7. Desde luego, no parecen fruto del azar o la arbitrariedad y revelan un cierto conocimiento de cálculos complejos, como la multiplicación y la división.
Pero las dos columnas laterales son aún más sorprendentes. En la izquierda, las muescas están agrupadas formando cuatro números, 19, 17, 13 y 11, es decir, todos los números primos comprendidos entre el 10 y el 20. Por su parte, en la columna de la derecha los números representados son el 11 (10+1), el 21 (20+1), el 19 (20-1) y el 9 (10-1).
Todos los números de las dos columnas laterales son impares y, además, en cada una de las dos columnas laterales se cuentan 60 muescas. La columna del centro tiene 48 marcas. Tanto el 60 como el 48 son múltiplos de 12 y esto no es una cuestión menor, ya que los pueblos africanos antiguos usaban la base 12 para contar y no la base 10 que es la aceptada hoy universalmente. Teniendo esto en cuenta, los números de la columna central cobran un nuevo significado: 3+6 (9, es decir, 12-3); 4+8 (12); 10+5 (15, es decir, 12+3) y 5+7 (12).
En la columna lateral derecha, sin embargo, parece que se utiliza la base 10, mientras que en la columna izquierda aparecen los números primos. Este hecho ha llevado a la conclusión a algunos matemáticos de que estamos ante una especie de herramienta que servía para hacer conteos usando las dos bases.
En otros yacimientos africanos, como Shankeinab (Sudán) y Nagoda (Egipto), se han encontrado petroglifos con incisiones similares a las de Ishango que también utilizan la base 12. Sin embargo, en todos los casos son posteriores, lo que apunta a que este lugar situado junto al lago Eduardo fue un auténtico centro de irradiación de cultura y conocimiento de la antigüedad.
Fuentes:
http://guinguinbali.com/index.php?lang=es&mod=news&task=view_news&cat=2&id=708
http://www.unavarra.es/puresoc/pdfs/c_salaconfe/0-Lizcano-03-1.pdf
http://www.redacademica.edu.co/archivos/redacademica/proyectos/pecc/centro_documentacion/caja_de_herramientas/serie_2_metodologias/etnomatematica_africana.pdf